3 research outputs found

    Power Beacon’s deployment optimization for wirelessly powering massive Internet of Things networks

    Get PDF
    Abstract. The fifth-generation (5G) and beyond wireless cellular networks promise the native support to, among other use cases, the so-called Internet of Things (IoT). Different from human-based cellular services, IoT networks implement a novel vision where ordinary machines possess the ability to autonomously sense, actuate, compute, and communicate throughout the Internet. However, as the number of connected devices grows larger, an urgent demand for energy-efficient communication technologies arises. A key challenge related to IoT devices is that their very small form factor allows them to carry just a tiny battery that might not be even possible to replace due to installation conditions, or too costly in terms of maintenance because of the massiveness of the network. This issue limits the lifetime of the network and compromises its reliability. Wireless energy transfer (WET) has emerged as a potential candidate to replenish sensors’ batteries or to sustain the operation of battery-free devices, as it provides a controllable source of energy over-the-air. Therefore, WET eliminates the need for regular maintenance, allows sensors’ form factor reduction, and reduces the battery disposal that contributes to the environment pollution. In this thesis, we review some WET-enabled scenarios and state-of-the-art techniques for implementing WET in IoT networks. In particular, we focus our attention on the deployment optimization of the so-called power beacons (PBs), which are the energy transmitters for charging a massive IoT deployment subject to a network-wide probabilistic energy outage constraint. We assume that IoT sensors’ positions are unknown at the PBs, and hence we maximize the average incident power on the worst network location. We propose a linear-time complexity algorithm for optimizing the PBs’ positions that outperforms benchmark methods in terms of minimum average incident power and computation time. Then, we also present some insights on the maximum coverage area under certain propagation conditions

    On the optimal deployment of power beacons for massive wireless energy transfer

    No full text
    Abstract Wireless energy transfer (WET) is emerging as an enabling green technology for Internet of Things (IoT) networks. WET allows the IoT devices to wirelessly recharge their batteries with energy from external sources such as dedicated radio frequency transmitters called power beacons (PBs). In this paper, we investigate the optimal deployment of PBs that guarantees a network-wide energy outage constraint. Optimal positions for the PBs are determined by maximizing the average incident power for the worst location in the service area since no information about the sensor deployment is provided. Such network planning guarantees the fairest harvesting performance for all the IoT devices. Numerical simulations evidence that our proposed optimization framework improves the energy supply reliability compared to benchmark schemes. Additionally, we show that although both, the number of deployed PBs and the number of antennas per PB, introduce performance improvements, the former has a dominant role. Finally, our proposal allows to extend the coverage area while keeping the total power budget fixed, which additionally reduces the level of electromagnetic radiation in the vicinity of PBs

    Minimization of the worst-case average energy consumption in UAV-assisted IoT networks

    No full text
    Abstract The Internet of Things (IoT) brings connectivity to a massive number of devices that demand energy-efficient solutions to deal with limited battery capacities, uplink-dominant traffic, and channel impairments. In this work, we explore the use of Unmanned Aerial Vehicles (UAVs) equipped with configurable antennas as a flexible solution for serving low-power IoT networks. We formulate an optimization problem to set the position and antenna beamwidth of the UAV, and the transmit power of the IoT devices subject to average-Signal-to-average-Interference-plus-Noise Ratio (SĚ„INR) Quality of Service (QoS) constraints. We minimize the worst-case average energy consumption of the latter, thus, targeting the fairest allocation of the energy resources. The problem is non-convex and highly non-linear; therefore, we re-formulate it as a series of three geometric programs that can be solved iteratively. Results reveal the benefits of planning the network compared to a random deployment in terms of reducing the worst-case average energy consumption. Furthermore, we show that the target SĚ„INR is limited by the number of IoT devices, and highlight the dominant impact of the UAV hovering height when serving wider areas. Our proposed algorithm outperforms other optimization benchmarks in terms of minimizing the average energy consumption at the most energy-demanding IoT device, and convergence time
    corecore